Search results for "Ito calculu"

showing 2 items of 2 documents

Path integral solution handled by Fast Gauss Transform

2009

Abstract The path integral solution method is an effective tool for evaluating the response of non-linear systems under Normal White Noise, in terms of probability density function (PDF). In this paper it has been observed that, using short-time Gaussian approximation, the PDF at a given time instant is the Gauss Transform of the PDF at an earlier close time instant. Taking full advantage of the so-called Fast Gauss Transform a new integration method is proposed. In order to overcome some unsatisfactory trends of the classical Fast Gauss Transform, a new version termed as Symmetric Fast Gauss Transform is also proposed. Moreover, extensions to the two Fast Gauss Transform to MDOF systems ar…

Mechanical EngineeringMathematical analysisMathematicsofComputing_NUMERICALANALYSISAerospace EngineeringOcean EngineeringStatistical and Nonlinear PhysicsProbability density functionWhite noiseCondensed Matter Physicssymbols.namesakeNuclear Energy and EngineeringKronecker deltaComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONPath integral formulationsymbolsTwo-sided Laplace transformApplied mathematicsGauss–Seidel methodSettore ICAR/08 - Scienza Delle CostruzioniPath integral solution Fast Gauss Transform Symmetric Fast Gauss Transform Fokker-Planck equation Ito calculusS transformGaussian processCivil and Structural EngineeringMathematicsProbabilistic Engineering Mechanics
researchProduct

Identification of stiffness,dissipation and input parameters of randomly excited non-linear systems: Capability of restricted potential models (RPM)

2006

Abstract A dynamic identification technique in the time domain for time invariant systems under random external forces is presented. This technique is based on the use of the class of restricted potential models (RPM), which are characterized by a non-linear stiffness and a special form of damping, that is a product of the input power spectral density (PSD) matrix and the velocity gradient of a non-linear function of the total mechanical energy. By applying It o ^ stochastic differential calculus and by specific analytical manipulations, some algebraic equations, depending on the response statistics and on the mechanic parameters that characterize RPM, are obtained. These equations can be u…

Applied MathematicsMechanical EngineeringMathematical analysisinput identificationSystem identificationWhite noiseFunction (mathematics)LTI system theoryNonlinear systemMatrix (mathematics)Ito calculuSettore ICAR/09 - Tecnica Delle Costruzionipotential modelMechanics of MaterialsControl theoryTime domainwhite noiseMechanical energyMathematicssystem identification
researchProduct